
SKDH 145

Half Controlled 3-phase

SKDH 145

Target Data

Features

Compact design

Bridge Rectifier

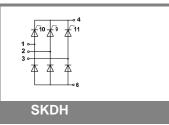
- Two screws mounting
- Heat transfer and isolation through direct copper board (low R th)
- Low resistance in steady-state and high reliability
- High surge currents
- UL -recognized, file no. E 63 532

Typical Applications

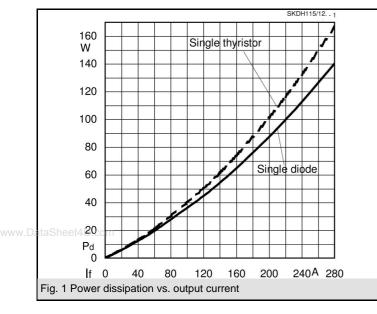
- For DC drives with a fixed direction of rotation
- Controlled field rectifier for DC motors
- Controlled battery charger

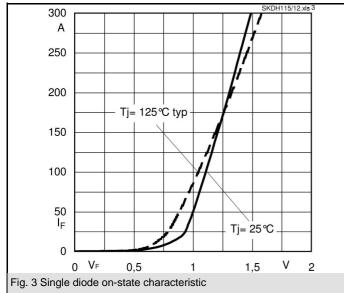
1300 1700		1200 SKDH 145/12			
		1600		SKDH 145/16	
Symbol	Con	ditions		Values	Units
I _D	T = 8			110	A
I _{TSM} , I _{FSM}	5	25 °C; 10 ms		1350	A
I SIVI' F SIVI		125 °C; 10 ms		1250	А
i²t		25 °C; 8,3 10 ms		9100	A²s
	.,	125 °C; 8,3 10 ms		7800	A²s
V _T , V _F	T _{vi} =	25 °C; I _T , I _F =150A		max. 1,6	V
V _{T(TO)} / VF(TO)		125 °C;		max. 0,9	V
r _T	T _{vj} =	125 °C		max. 5	mΩ
I _{DD} ; I _{RD}		125 °C; V _{DD} = V _{DRM} ;		max. 20	mA
t _{gd}	• • •	°C; $I_G = A$; $di_G/dt = A/$	/µs		μs
t _{gr}		· V _{DRM}			μs
(dv/dt) _{cr}	T _{vi} =	125 °C		max. 500	V/µs
(di/dt) _{cr}		125 °C; f = 5060 Hz	Ζ	max. 50	A/µs
t _q		125 °C; typ.		150	μs
I _H	T _{vj} =	25 °C; typ. / max.		- / 250	mA
Ι _L	T_{vj} = 25 °C; R_G = 33 Ω			- / 600	mA
V _{GT}	T _{vj} =	25 °C; d.c.		min. 3	V
I _{GT}	$T_{vi} = 1$	25 °C; d.c.		min. 150	mA
V_{GD}	T _{vj} = 125 °C; d.c.		max. 0,25	V	
I_{GD}	T _{vj} =	125 °C; d.c.		max. 6	mA
					K/W
_					K/W
R _{th(j-s)}	per th	iiristor / diode		0,63	K/W
T _{vi}				- 40 + 125	°C
T _{stg}				- 40 + 125	°C
T _{solder}	terminals		260	°C	
V _{isol}	a. c. (50 Hz; r.m.s.; 1 s / 1 r	nin.	3600 (3000)	V
M _s	to he	atsink		2,5	Nm
M _t					Nm
m	approx.			75	g
Case	SEM	PONT 5		G 61	

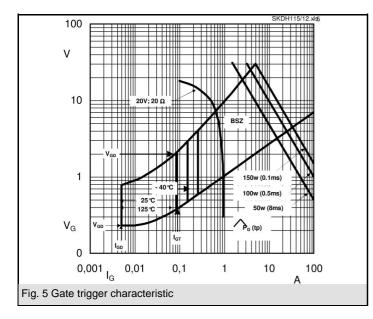
 V_{RRM}, V_{DRM}

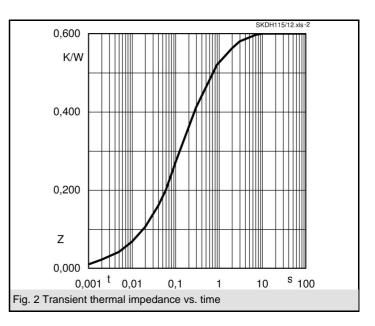

V

V_{RSM}

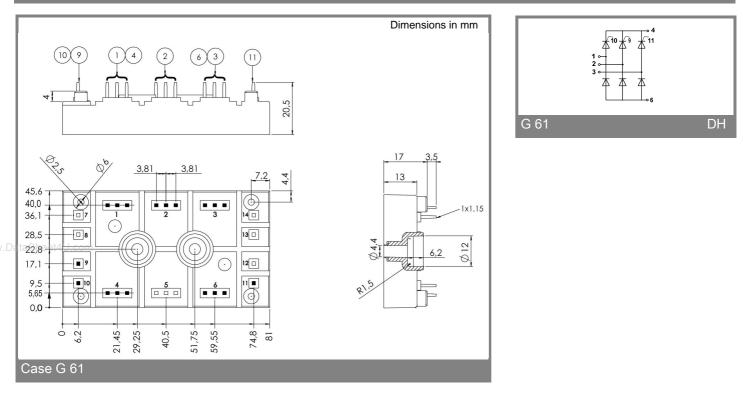

V


 $I_D = 140 \text{ A}$ (full conduction)


(T_s = 80 °C)




SKDH 145



SKDH 145

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.